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Abstract. The phenomenological amplitude for the reaction πN → ππN fixed by fittings to the experimen-
tal data in the energy region 0.300 ≤ PLab ≤ 500 MeV/c is used for modelling the Chew–Low extrapolation
and Olsson–Turner threshold approach. It is shown that the uncritical application of the former results
in enermous theoretical errors, the extracted values being in fact random numbers. The results of the
Olsson–Turner method are characterized by significant systematic errors coming from unknown details of
the isobar physics.

PACS. 13.75.-n Hadron-induced low- and intermediate reactions and scattering (energy ≤ 10 GeV) –
13.75.Gw Pion-baryon interactions – 13.75.Lb Meson-meson interaction

1 Introduction

The reactions πN → ππN and K → ππeν are considered
as the most important sources of the indirect information
on the low energy characteristics of the ππ interaction pre-
dicted in the framework of the Chiral Perturbation The-
ory (ChPT) approach. The recent results [1] of so called
Generalized ChPT approach [2] and the progress in the
two–loop ChPT calculations [1, 3] are claiming for more
precise experimental information on the ππ interaction at
low energies.

The review of previously used methods of extracting
the ππ characteristics from πN → ππN data and the
details of their applications can be found in the paper [4]
by Leksin. The methods suggested for application to the
modern πN → ππN experiments are the following [5].

1. The Chew–Low extrapolation procedure by Goebel,
Chew and Low [6] is an apparently model-independent
approach. It can present a complete information on the
ππ cross section, provided the OPE contribution domi-
nates and the interval of the nucleon momentum transfer
squared tNN , which equals the squared mass of the vir-
tual pion, allows a unique extrapolation. When comparing
the phase space of momentum transfer −20µ2 < tNN <
−0.2µ2 at PLab = 500 MeV/c with the distance of extrap-
olation ≈ µ2, it becomes obvious that the πN → ππN
kinematics itself does not prevent the use of the Chew–
Low procedure at low energies, provided there are enough
events. It is the presence of contributions like that of ∆
and N (∗) isobars which makes it difficult to perform a
straightforward extrapolation at moderate energies due

to the perturbation of the simple tNN -dependence of the
OPE graph. The absolute values of all other contributions
are killed at the extrapolation point tNN = µ2, but the re-
sult of extrapolation is known to be sensitive to the shape
of the extrapolation curve [8, 4].

2. In view of importance of concurrent mechanisms
at intermediate energies, the approach could be changed
to determining the OPE parameters directly in the phys-
ical region of the reaction — this was implemented by
the model of Oset and Vicente–Vacas [9]. It is clear that
the neglect of a specific resonance contribution and/or the
account of another one are capable to produce a lot of
derivatives of the Oset–Vicente–Vacas model.

There is the energy region below PLab = 500 MeV/c,
where the variation of tNN is sufficient to detect the OPE
contribution, since the contributions of the concurrent
processes, being non-negligent, are smooth enough. The
relativistic model [10] takes these features into account
and naturally completes the Oset–Vicente-Vacas approach
in this specific energy domain.

3. The investigations by Olsson and Turner [11] are
devoted to the threshold properties of πN → ππN reac-
tions. Since the phase space of tNN variable shrinks to the
point t0NN = −2.31µ2, the application of the Chew–Low
procedure is impossible. The idea is to take advantage of
Chiral Dynamics at the πN → ππN threshold.

The important results of the approach are the formu-
lae expressing the ππ-scattering lengths in terms of the
threshold characteristics of the pion-production reactions.
These formulae gained a broad application, especially in
the recent years, when new data on the πN → ππN reac-
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tions in the close-to-threshold energy region became avail-
able [12, 13, 14, 15], [16], [17], [18].

The evidence of the importance of next-to-leading or-
der terms of Chiral Lagrangian for the πN interaction
and, in particular, for the πN → ππN amplitude [19],
makes it necessary to modify the Olsson–Turner method.
Recently the approach of heavy baryon approximation was
used to derive corrections to the Olsson–Turner formulae
and to make direct predictions of ChPT for the threshold
πN → ππN amplitude itself [20].

The modern πN → ππN experiments planned to test
the ChPT predictions are listed in [21]. Some of the exper-
iments have been already finished: BNL and LAMPF re-
sults on total cross sections have been published [17], [18],
1D-distributions have appeared recently in WWW (home
pages [22], [23]), higher distributions are in progress, the
off-line treatment of experimental tapes of the TRIUMF
experiment [24] will be completed soon. Therefore, it is
time to discriminate between the above methods.

Recently the relativistic version of the Oset–Vicente-
Vacas approach 2 was used for the analysis of the existing
low-energy πN → ππN data. The basics of the model,
the data base and major results of fittings are described
in [25]. This paper uses the approach 2 since both the
Chew–Low extrapolation and the Olsson–Turner thresh-
old formulae cannot present any hint for cross-checking
alternative methods. The phenomenological amplitude is
fixed by fitting to the data on total cross sections and dis-
tributions in the energy region from the threshold up to
PLab ≤ 500 MeV/c.

The main goal of the present work is to present grounds
for comparison of the listed approaches 1, 2, 3. Hav-
ing determined the parameters of the phenomenological
πN → ππN amplitude in the framework of the approach
2, one can forget about parameter errors and use the the-
oretical amplitude as the original input to test the ap-
proaches 1 and 3.

The paper is organized as follows. Necessary kinemat-
ical formulae are collected in Sect. 2. Section 3 deals with
the model-independent properties of the πN → ππN am-
plitude at the threshold and describes the results of mod-
elling the threshold data necessary for implementation of
the Olsson–Turner approach. The results of the Chew–
Low extrapolation applied to the simulated data are ex-
posed and discussed in Sect. 4. The summary, conclud-
ing remarks and discussion of the further development are
given in Conclusions.

2 General structure of πN → ππN Amplitude

This short section introduces the basic formulae of the
paper [25].

We consider the reaction

πa(k1) +Nα(p;λi)→ πb(k2) + πc(k3) +Nβ(q;λf ), (1)

where a, b, c = 1, 2, 3 and α, β = 1, 2 are isotopic indices
of pions and nucleons, respectively, and λi(λf ) are polar-
izations of initial (final) nucleons.

Separating the nucleon spinor wave functions from the
reaction amplitude Mabc

βα (λf ;λi)

Mabc
βα (λf ;λi) = ū(q;λf )M̂abc

βα (iγ5)u(p;λi), (2)

one can define the isoscalar amplitudes Â, B̂, Ĉ, D̂ by

M̂abc
βα = Âτaβαδ

bc + B̂τ bβαδ
ac + Ĉτ cβαδ

ab + D̂iεabcδβα, (3)

τa, a = 1, 2, 3 being the nucleon-isospin generators.
Each isoscalar function A,B,C,D is decomposed into

four independent spinor form factors in the following way:

Â = SA + V̄Ak̂ + VA
ˆ̄k + i/2TA[k̂, ˆ̄k]

≡

SA
V̄A
VA
TA


T

·

 1̂
k̂
ˆ̄k

i/2[k̂, ˆ̄k]

 , (4)

B̂ = SB + V̄B k̂ + . . . ,

· · · ·

Here, k, k̄ are the crossing-covariant combinations of pion
momenta

k = −k1 + εk2 + ε̄k3; k̄ = −k1 + ε̄k2 + εk3, (5)

where ε = exp(2πi/3) = −1/2 + i
√

3/2, ε̄ = ε∗ = −1/2−
i
√

3/2. These combinations together with

Q = −k1 + k2 + k3 = p− q, P ≡ p+ q (6)

are used to define five independent scalar variables

tNN ≡ Q2, θ ≡ Q · k = θR + iθI , θ̄ ≡ Q · k̄ = θR − iθI ,
ν ≡ P · k = νR + iνI , ν̄ ≡ P · k̄ = νR − iνI , (7)

determining the point in the phase space of the considered
reaction.

The four-pion vertex V4π of the OPE graph is charac-
terized by the Mandelstam variables. To avoid the off-shell
ambiguity we use only the two-pion invariant mass

sππ ≡ (k2 + k3)2 (8)

in the discussion below.
The matrix element ‖M‖2 entering the unpolarized

cross section is the quadratic form of the vector of spinor
structures (SX , V̄X , VX , TX):

‖MX‖2 ≡ 1/2
∑
λf ,λi

[
ū(q;λf )M̂X(iγt)u(p;λi)

]
×
[
ū(q;λf )M̂X(iγ5)u(p;λi)

]∗
=

SX
V̄X
VX
TX


†

G

SX
V̄X
VX
TX

 , (9)

(X = {π−π+n}, {π−π0p}, {π0π0n},
{π+π+n}, {π+π0p}),
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G ≡ 1
2
Sp

(q̂ +m)


1̂
k̂
ˆ̄k

i
2 [k̂, ˆ̄k]

 (p̂−m)γ0


1̂
k̂
ˆ̄k

i
2 [k̂, ˆ̄k]


†

γ0

 .
(10)

The hermitian matrix G is given in the paper [10] for
the simplified case of equal pion masses.

To plot the data and theoretical results we define the
“quasi-amplitude” 〈M〉(α), which is the square root of
the cross section σ(α)(‖M‖2) divided by the phase space
σpsv(α) ≡ σ(α)(1):

〈M〉(α) ≡
√
σ(α)(‖M‖2)
σ(α)(1)

. (11)

Here, the phase space σ(1) is the theoretical cross section
calculated with the unit matrix element.

3 Olsson–Turner approach

The idea of the Olsson–Turner approach was to relate the
threshold values of the πN → ππN amplitude with the
ππ-scattering lengths. We advise reader to look for de-
tails into the original papers [11]. Here, we only remind
that there are two principal steps in the discussed ap-
proach 1) determination of the threshold limits of ampli-
tudes for independent isospin channels; 2) calculation of
the ππ-scattering lengths with the account of other contri-
butions, like isobar exchanges, to the above threshold lim-
its. These steps are vital for the success of the approach,
and our conclusions are based upon the analysis of these
steps.

3.1 Threshold amplitudes

To discuss the first step one needs to derive the model-
independent properties of the reaction amplitude at the
very threshold and to judge upon the quality of experi-
mental information.

There are considerable simplifications in the represen-
tation of the πN → ππN amplitude (4) at the threshold
of the reaction. The simplifications arise from a) the co-
incidence of momenta of the outgoing pions (k̂2 = k̂3), b)
the vanishing contribution of the isospin-antisymmetric
amplitudes D̂ and B̂ − Ĉ (see (3)).

Another simplification appears after summing over fi-
nal polarizations and averaging over initial ones of the am-
plitude (2) squared modulus. It degenerates at the thresh-
old to

‖MX‖2 = (−t0NN )|S0
X − (2m+ 3µ)(V̄ 0

X + V 0
X)|2,(12)

(X = {π−π+n}, {π−π0p}, {π0π0n}, {π+π+n},
{π+π0p}),

where t0NN = −3µ2m/(m + 2µ) is the threshold value of
the variable tNN . This represents the grounds to introduce
the threshold amplitudes.

The isotopic threshold amplitudes are

A0 =
√
−t0NN [S0

A − (2m+ 3µ)(V̄ 0
A + V 0

A)],

B0 =
√
−t0NN [S0

B − (2m+ 3µ)(V̄ 0
B + V 0

B)], (13)

C0 =
√
−t0NN [S0

C − (2m+ 3µ)(V̄ 0
C + V 0

C)],

where all form factors are to be calculated at the threshold
values of kinematical variables; this provides

B0 = C0. (14)

To link the isotopic threshold amplitudes (13) with the
experimental information let us construct the quantities
M0

M0
{−+n} = (A0 +B0)

√
2/2, M0

{−0p} = B0/2.

M0
{00n} = A0/2, M0

{++n} = B0, M0
{+0p} = B0/2, (15)

which include both the isotopic and the statistical factors
(hereafter, we use meson charges in notations for the re-
action channels).

Then the absolute values of the threshold amplitudes
M0
X can be expressed in terms of threshold limits of the

experimental quasi-amplitudes 〈MX〉 defined by eq. (11):

|M0
X | = 〈MX〉|s→s0 ,

(X = {−+ n}, {−0p}, {00n}, {+ + n}, {+0p}). (16)

The threshold amplitudes (15) are not dimensionless;
their numerical values will be given in (GeV)−1.

The threshold limits (15), determined by two isotopic
threshold amplitudes A0 and B0 only, must satisfy three
relations. The first two are straightforward:

|M0
{++n}| = 2|M0

{−0p}| = 2|M0
{+0p}|. (17)

It follows from the definition (15) that

M0
{++n} =

√
2M0

{−+n} − 2M0
{00n}. (18)

This implies that the relation between positive quantities
(16) can be either

|M0
{++n}| =

√
2|M{−+n}| − 2|M0

{00n}| (19)

or
|M0
{++n}| =

√
2|M0

{−+n}|+ 2|M0
{00n}| (20)

or
|M0
{++n}| = −

√
2|M0

{−+n}|+ 2|M0
{00n}|, (21)

depending on relative sign of A0 and B0.
Now it is necessary to recall the known properties of

πN → ππN cross sections. Since in the vicinity of the
threshold the known cross sections σ{00n} of the {00n}
channel are approximately equal to the cross sections
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σ{−+n}, this excludes the possibility given by (19), be-
cause it results in the negative right-hand side. The cross
sections σ{++n} are considerably smaller than σ{−+n} and
σ{00n} at PLab ≤ 0.5 GeV/c; so the variant (20) is also im-
possible. Thus, we can state, combining with the previous
two relations, that

2|M0
{−0p}| = 2|M0

{+0p}| = |M0
{++n}|

= 2|M0
{00n}| −

√
2|M0

{−+n}|. (22)

Apart from the neglect of imaginary parts, the ob-
tained relations (22) are model-independent, since only
the symmetry arguments and few properties of experimen-
tal cross sections were used. There is a strong motivation
to consider the parameters A0 and B0 as real ones. In-
deed, the value of the imaginary part collects contribu-
tions which are due to the following:

a. Three-particle intermediate states. This includes
contributions of quasi-two-particle states, when the third
particle is present as a spectator, namely, N for the ππ
state and π for the πN state; the former configuration
is characterized by the large imaginary part of isospin-
zero ππ amplitude. The three-particle phase space makes
this contribution vanish at the threshold. It was verified
with the use of (1/m) expansion in the paper [20] that
ππ loops did not contribute to the threshold πN → ππN
amplitude.

b. Two-particle intermediate states. Only the πN sys-
tem is allowed at the considered energies. The angular mo-
mentum conservation forces these particles to be in the P
wave when the final particles are in the S wave at thresh-
old, according to quantum mechanics; otherwise, the P -
parity properties of the πN system mismatch those of the
ππN final state. The known phases of the P31 (≈ −4◦)
and P11 (≈ 2◦) waves of the πN -elastic amplitudes ap-
prove the neglect of the imaginary part of the πN → ππN
amplitude at the threshold.

c. Single-particle intermediate states. The only possi-
ble one at the threshold of the πN → ππN reaction is the
∆ isobar. It appears in the P wave of initial particles, and
its decay into the threshold configuration of the final ππN
state has negligible width [26].

The estimate of the imaginary part of the πN → ππN
amplitude by the dispersion analysis of the paper [27] al-
lows us to consider the amplitude to be approximately
real up to the energies PLab = 0.50 GeV/c. Thus, there
should be no expectations for finding a physically mean-
ingful imaginary part or, a nontrivial relative phase of A0

and B0, at the πN → ππN threshold. Hence, the thresh-
old identity (21) must be practically exact. The identities
(17) are the exact consequences of the isotopic invariance
irrespective of the value of the imaginary part.

The original formulae [11] by Olsson and Turner ex-
press five threshold amplitudes in terms of two ππ-
scattering lengths aI=0

0 and aI=2
0 in the form

M0
X = c0Xa

I=0
0 + c2Xa

I=2
0 + c̃X , (23)

(X = {−+ n}, {−0p}, {00n}, {+ + n}, {+0p}).
The numerical values of coefficients c0X , c2X , c̃X given by
Olsson and Turner satisfy the conditions (22) exactly.

To resume, one can state that the threshold limits of
quasi-amplitudes of five channels contain independent in-
formation on two isotopic threshold amplitudes only. The
relations (22) are powerful consistency constraints on the
experimental input of the Olsson–Turner approach.

The examination of relations (15), (16) shows that,
apart from the overall sign ambiguity of isotopic threshold
amplitudes A0, B0, their relative sign can also become in-
definite, depending on the accuracy of experimental infor-
mation. In what follows we call the solution physical (un-
physical), when A0 and B0 are of different (equal) signs.
In terms of the ππ-scattering lengths, the two opposite
signs correspond to the different (equal) signs of aI=0

0 and
aI=2

0 .

3.2 Test of consistency of the threshold data

The advantage of the Olsson–Turner approach is the sim-
plicity of experimental information the approach relies
upon. One needs to know only the threshold limits of
quasi-amplitudes (11). The latter are extrapolated from
data on total cross sections which are the most reliable
statistically.

The results of global analyses have been already re-
ported starting from the publication [28] (see also [29]).
The most important conclusion of the work [28] is that the
data from the region PLab ≤ 400 MeV/c admit amplitudes
which are linear in energy of the center-of-mass system.
Here, the data with PLab ≤ 500 MeV/c will be exposed to
linear fittings. Moreover, any preliminary selection will be
excluded. Indeed, it is the unmotivated preference of one
set of data to another that is the reason for contradictory
results.

The entire data base described in Sect. 3 of the paper
[25] contains, along with the old data, the relatively new
results. It should be noted, that before the OMICRON
measurements [13, 14, 15] only the data of the {− + n}
channel allowed one to obtain the definite results from the
linear fit; the above mentioned OMICRON data provided
the possibility to carry out linear fittings for the {−0p}
and {+ + n} channels as well. The authors of the paper
[28] took advantage of the precise data [17] on σ{00n} very
close to threshold and provided the simultaneous linear fit
of all channels.

Recent experimental information given in [18] for the
first time makes it possible to determine the threshold
limit of the cross section for the channel {+0p} and to
test the prediction (22) for the relation

M0
{+0p} = M0

{−0p}. (24)

In fact, the approximate equality of cross sections of these
two channels is displayed along all energy interval consid-
ered.

We pay special attention to the {+ + n} channel.
There are two sets of the near-threshold data for the
channel {+ + n}, namely, [14] and [16], which are in cer-
tain disagreement. They lead to different threshold limits
|M0
{++n}|.
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Table 1. Threshold values provided by data fittings in the variants: ALL — all data; TRI — without [14]; OMI — without
[16]; X — without [14, 16]; IND — independent fits of channels. Bold-face numbers correspond to physical solutions of real fits
with seven free parameters, slanted ones relate to unphysical solutions. The roman-font numbers stand for fits with complex
amplitudes. The numbers in brackets in the columns of the {− + n} and {00n} channels display the imaginary part of the
resulting amplitude, provided B0 is real. The last two rows represent predictions of eqs. (21) and (17) based on the data of
individual fits for channels {−+ n}, {00n} and {−0p}

Fit {−+ n} {00n} {−0p} {+0p} {+ + n} χ2
DF

|A0 +B0|/
√

2 |A0|/2 |B0|/2 |B0|/2 |B0|

ALL 398 ± 18 413 ± 12 132 ± 6 132 ± 6 264 ± 11 0.99
524 ± 24 252 ± 12 118 ± 5 118 ± 5 236 ± 11 1.56
401 ± 150 409 ± 101 132 ± 6 132 ± 6 264 ± 11 1.00
(74 ± 123) (52 ± 87)

TRI 404 ± 18 406 ± 12 121 ± 6 121 ± 6 241 ± 11 0.78
518 ± 24 260 ± 12 106 ± 6 106 ± 6 212 ± 11 1.33
406 ± 26 406 ± 18 119 ± 6 119 ± 6 238 ± 12 0.77
(10−4) (10−4)

OMI 372 ± 23 447 ± 13 184 ± 10 184 ± 10 368 ± 20 0.83
533 ± 32 241 ± 13 136 ± 10 136 ± 10 272 ± 20 1.60
401 ± 60 410 ± 54 197 ± 11 197 ± 11 395 ± 22 0.80

(181 ± 23) (128 ± 16)

X 387 ± 26 427 ± 14 154 ± 12 154 ± 12 307 ± 24 0.76
506 ± 36 275 ± 14 83 ± 12 83 ± 12 166 ± 24 1.36
402 ± 98 410 ± 76 164 ± 14 164 ± 14 329 ± 29 0.76

(154 ± 40) (109 ± 28)

IND 401 ± 19 409 ± 18 155 ± 25 97 ± 51 263 ± 11 ALL
237 ± 12 TRI
429 ± 26 OMI
358 ± 37 X

Eq.(21) – – 125 ± 22 125 ± 22 250 ± 44
Eq.(17) – – – 155 ± 25 310 ± 50

Four basic variants of fitting ALL, OMI, TRI and X
were used for determination of the threshold amplitudes.
These notations stand for the corresponding data selection
and are described in the caption of Table 1. The auxiliary
fits of the variant IND help to understand the trend dic-
tated by data of individual channel in the simultaneous
fit.

There were two types of fits in all four basic variants.
First, the independent threshold values A0 and B0 are
treated as being real. We use seven parameters for simul-
taneous linear fittings of five channels: two independent
parameters for threshold values, A0 and B0, and five in-
dependent slopes in the invariant kinetic energy

TK =
√
s− T0. (25)

In calculations, the latter quantity was taken to be TK =√
(p+ k1)2 − (mf + µ2 + µ3), since isospin splitting in

the particle masses cannot be processed as a correction
because of the nonanalytic mass-dependence of the near-
threshold phase space — the demonstration can be found
in [30].

Second, we add one parameter to describe the relative
phase of the complex quantities A0 and B0.

The experimental data described in the paper [25] and
the results of the main solution for the variant ALL are

shown in Fig. 1, where the values of quasi-amplitudes
〈MX〉 are plotted versus the invariant kinetic energy TK.
The threshold amplitudes |M0

X | are collected in Table 1.
Every time there appeared another solution of the fit,

the slanted numbers being used for resulting values in Ta-
ble 1. It originates from the sign ambiguity discussed in
Subsect. 3.1. These auxiliary solutions choose the relation
(20) to be true one, and it was called unphysical, since it
provides equal signs for isospin-zero and isospin-two ππ-
scattering lengths.

Let us compare the results of the linear fit discussed
here with the results of the global analysis of the paper
[25]. It is sufficient to compare Fig. 2 of [25] with Fig. 1
of this paper.

One can conclude that the threshold limits provided
by the linear fit are good for all channels but the {− +
n} one. Because of the perceptible curvature revealed by
solutions for the latter channel, the linear fit generally
underestimates the value in question.

Table 1 does not allow one to choose a preferable so-
lution using the χ2 criterion. All solutions are practically
on equal footing. Even the unphysical ones cannot be for-
mally rejected.

The relatively low χ2 values for the unphysical solu-
tion are first of all due to rather large overall uncertain-
ties of experimental data. More discouraging reason is the
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Fig. 1. Linear fit of total cross
sections for all five channels with
7 free parameters

existence of subsets of data, supporting the discussed so-
lution almost in every channel — compare IND results
and the slanted numbers in Table 1. Only the data for the
{00n} channel reject this solution as a whole. Examina-
tion of the definitions (15) displays that, with the value
B0 no less than 200 GeV−1 fixed by the data for {−0p}
and {+ + n} channels, the threshold limits for {− + n}
and {00n} channels cannot be in balance, provided A0 and
B0 amplitudes are of equal signs. Although the closest to
threshold points of the OMICRON experiment [14] agree
well with the large value of |M0

{−+n}|, the data for the
{00n} channel [17] are incompatible with so small predic-
tion given by the unphysical solution (see Table 1).

In all variants the presence of the imaginary part im-
proves the fit. In the variants ALL and TRI the imaginary
part Im A0 remains compatible with zero: 104 ± 174 —
ALL and 10−3±102 — TRI (the amplitude B0 is real). In
the rest variants the imaginary part is found to be unrea-
sonably large: 255± 32 — OMI, 218± 57 — X. Neverthe-
less, it cannot help to get rid of the contradiction between
the data of the {−0p} and {+ +n} channels, especially in
the OMI variant of the individual fit.

The examination of the threshold identities (17), (21)
clearly displays the contradiction between the OMICRON

data for {−0p} and {+ + n} channels themselves. There-
fore, it was an inconsistent input of the OMICRON analy-
sis [13]–[15] that produced controversial values of the ππ-
scattering lengths. The analysis given in Table 1 leads to
the main conclusions that the threshold amplitudes given
by the TRI and ALL variants are the most consistent from
the point of view of the threshold identities and stability
against the addition of the complex phase and definitely
better χ2 for physical solutions.

3.3 Account of nonOPE contributions

The threshold amplitudes discussed above are the corner
stone for the Olsson–Turner approach. The general form
of relations between the ππ-scattering lengths with the
threshold amplitudes is reproduced by (23). The quanti-
ties c̃X in these relations are corrections originating from
the higher-order terms in the four-pion vertex of the OPE
graph and from contributions of all other mechanisms (we
call these latter nonOPE).

The calculation of coefficients c0X , c2X , c̃X was initially
performed in the papers [11] in the approximation which
is now identified with the leading order of ChPT.
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Fig. 2. Simulations of extrapolation data
(FM ): dot — the amplitude of the best
physical solution; square — the amplitude
without the OPE contribution; circle —
the pure OPE amplitude; cross — the avail-
able experimental data of the paper [38] by
Blokhintseva

The improved formulae take into account the next-
to-leading order terms of the Chiral πN lagrangian [31,
20]. The papers [32, 33, 34] deal with various schemes of
accounting for the above terms in the framework of ChPT
and/or Heavy Baryon ChPT and give the predictions for
the nonrelativistic quanties D1 and D2, which coincide,
up to a factor, with the threshold amplitudes A0 and B0:

{
D1

D2

}
= −

√
2m

m+E0

4m
√
−t0NN

{
B0

A0

}
. (26)

The difference in the predicted values, which are quoted
in Table 2, makes it important to test the approximation
schemes of the discussed papers and the hypotheses about
the significance of various contributions. The results of
analysis given in the paper [25] are suitable for this pur-
pose, since the phenomenological amplitude determined
by fittings in consistent with the treated data.

Table 2 contains the list of nonzero contributions to
the threshold quantities D1 and D2 found in the solution
with χ2

DF = 1.16. The labels Ai are used for contribu-
tions of background parameters; gi for OPE parameters;
Ni for parameters of ππNN interaction;∆i for parameters
of πN∆, ππN∆ vertices; Ri for parameters of πNN (∗),
πN (∗)∆, ππNN (∗) interactions and ri for parameters of
πρNN vertex. We also quote the predictions of papers
[32, 33, 34] and the results of the linear fit for the ALL
and TRI data selections from Table 1 for comparison. The
underestimate of D2 by linear fits ALL and TRI is due to

the above-mentioned perceptible deviation of the solution
for {−+ n} channel from the linear pattern.

It should be noted that there is no absolute value
of separate contributions because of the field redefinition
freedom. However, the mass-on-shell parameters g0, g1,
g2 and g3 of the four-pion vertex are stable, and the ππ-
scattering lengths are well defined in our approach though
the “off-shell” contributions of the parameters g0, g1, g2

and g3 in Table 2 are model-dependent. Hence, the most
general inferences which can be derived from this Table
are the following:

1. The resulting quantities D1 and D2 are rather small
differences of large contributions of various mechanisms.

2. The OPE mechanism meets the strong competition
with all the rest ones in the threshold amplitudes, ∆ being
of importance for D1, while N (∗) is important for D2.

3. The influence of the D-wave parameters g2, g3 is
not negligible; their contribution reaches 30% of the total
OPE contribution to both quantities D1 and D2.

3.4 Conclusion

As was seen in the previous subsection, to overcome
the ambiguity in two threshold amplitudes A0 and B0,
which the Olsson–Turner approach is relying upon, one
should improve the accuracy of the experimental data on
πN → ππN total cross sections. We noticed the evidence
of the inapplicability of the linear fit for the {−+n} chan-
nel (see Subsect. 3.2.) — this enlarges the systematic er-
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Table 2. Contributions to the values D1 and D2 (in GeV−3)

D1 D2

A1 310.80 ± 35.44 310.80 ± 35.44
A2 194.66 ± 6.66 194.66 ± 6.66
A3 531.15 ± 13.61 −1062.31 ± 27.23
A4 597.88 ± 21.26 1195.77 ± 42.52
A6 −35.15 ± 95.36 −35.15 ± 95.36
A12 −69.56 ± 8.05 −69.56 ± 8.05
A13 −312.40 ± 7.48 624.80 ± 14.96
A15 −159.25 ± 4.08 318.50 ± 8.17
A16 −186.93 ± 16.28 −186.93 ± 16.28
A17 −170.52 ± 21.80 341.04 ± 43.60

g1 102.14 ± 251.12 102.14 ± 251.12
g2 488.02 ± 31.38 −976.04 ± 62.76
g3 −101.07 ± 33.53 −101.07 ± 33.53
g4 −161.90 ± 32.09 323.80 ± 64.19

r2 300.89 ± 7.75 −601.78 ± 15.50

∆1 −46.75 ± 15.48 93.50 ± 30.96
∆2 −238.69 ± 51.93 42.32 ± 55.87
∆3 93.27 ± 23.77 −186.54 ± 47.53
∆4 −14.91 ± 66.48 −115.75 ± 133.00
∆5 5.88 ± 11.12 −19.53 ± 33.28

R1 52.87 ± 108.57 −1079.45 ± 192.22
R3 65.55 ± 26.58 −131.09 ± 53.15
R5 0.46 ± 12.95 −90.90 ± 19.91
R6 2.41 ± 211.45 28.60 ± 505.56
R7 −7.91 ± 4.73 −40.14 ± 48.72

N2 128.70 ± 32.77 2.81 ± 22.75
N3 152.34 ± 45.49 −304.69 ± 90.97
N5 −12.29 ± 22.62 15.16 ± 21.78

Sum 313.92 ± 101.37 −1407.03 ± 229.23

[32] 339.69 ± 28.63 −1186.96 ± 123.64
[33] 344.89 ± 31.24 −1179.15 ± 136.66
[34] 334.48 ± 13.01 −1231.21 ± 7.81

ALL 327.78 ± 14.90 −1025.54 ± 29.80
TRI 300.46 ± 14.90 −1008.16 ± 29.80

rors of A0 and B0 values. Here, one can see that there are
unknown systematic errors in the theoretical field as well.
A large amount of information on the isobar physics in
necessary to fill this gap. Therefore, the approach is los-
ing the advantage of simplicity that made it so attractive.
Moreover, in view of importance of the D-wave parame-
ters, the approach cannot be considered as an independent
source of information on the ππ interaction, since it rep-
resents only two distinct quantities for the determination
of four parameters.

4 Chew–Low extrapolation

The existence of the pole in the OPE contribution at
tNN = µ2 is the keystone for the Chew–Low approach.
When plotting the experimental tNN distributions in
terms of cross-sections multiplied by (tNN −µ2)2, one can

eliminate all contributions but the OPE one by extrapola-
tion to the pole. The extrapolation result coincides, up to
a factor, with the ππ cross section. However, there are sev-
eral routines for the extrapolation to the point tNN = µ2

— relevant discussion on the applications of the approach
can be found in the review paper [4] (see also [35] for the
phenomenological introduction); the tests of some variants
performed long time ago were reported in the paper [36].
Only the linear extrapolation was found capable to pro-
vide definite results. This common feature of all applica-
tions of the Chew–Low procedure originates from the poor
accuracy of data. The amplitudes obtained in our fittings
present the possibility to test the approach by modelling
the experimental data and to arrive to conclusions which
are independent of the finite precision of the input.

4.1 Extrapolation function

From the very beginning it has become evident that the
extrapolation function constructed in terms of the total
cross section could represent a base neither for the linear
nor for quadratic extrapolation, with the only exception
for πN → ππN amplitude built of a constant OPE term
plus a constant in the same spinor structure S. Therefore,
we consider the extrapolation function FM (tNN ), defined
by the quasi-amplitude

√
dσ(‖M‖2)/dσ(1):

[FM (tNN )]2 ≡ (tNN − µ2)2

(−tNN )(2gπNN )2
× dσ(‖M‖2)

dσ(1)
. (27)

The principal feature of this extrapolation function is re-
lated to the assumption that the cross section vanishes at
tNN = 0 (see the discussion in Sect. 4.3.).

According to the general idea of the Chew-Low ex-
trapolation that only the OPE term of the πN → ππN
amplitude contributes to FM (µ2), it is convenient to define
the auxiliary function

[FOPE(tNN ]2 ≡ (tNN − µ2)2

(−tNN )(2gπNN )2
× dσ(‖MOPE‖2)

dσ(1)

=

∫
Ω

∫
(tNN )

dθIdνI |V4π|2∫
Ω

∫
(tNN )

dθIdνI
. (28)

The quantities appearing in (27), (28) depend on the
center-of-mass energy squared s and the two-pion invari-
ant mass sππ, which are fixed in the extrapolation; the
amplitude MOPE is obtained from M by eliminating all
the contributions but the OPE one.

Analytical calculation of FM (tNN ) is possible for the
simplest amplitudes only. Therefore, we calculate numeri-
cally the function FM (tNN ) obtained in various solutions
for our phenomenological amplitude. However, because of
the collapse of the integration domain Ω(tNN ) outside the
phase space of the πN → ππN reaction, the numerical
calculation of the function FM (tNN ) at tNN = µ2 also
becomes impossible. The Monte-Carlo utilities of high en-
ergy physics cannot generate events for the numerical in-
tegration outside the phase space.
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The integration in the right-hand side of (28) results
in the rational function of tNN and sππ. Neglecting the
imaginary part of the OPE amplitude, one can treat this
function as the quadratic form of the OPE parameters g0,
g1, g2, g3 defined in the paper [10]:

[FOPE]2 =

 g0

g1

g2

g3


T

(Φ̂)

 g0

g1

g2

g3

 , (29)

where the symmetric matrix Φ̂ is explicitly given by

Φ00 = 2, Φ01 = θR, Φ02 = 2(9θ2
R +A1)/9,

Φ03 = (9θ2
R −A1)/9,

Φ11 = (3θ2
R +A1)/6, Φ12 = (9θ2

R +A1)θR/9,
Φ13 = (9θ2

R − 7A1)θR/18,
Φ22 = 2(45θ4

R + 10θ2
RA1 +A2

1)/45,
Φ23 = (45θ4

R −A2
1)/45,

Φ33 = (45θ4
R + 50θ2

RA1 +A2
1)/90,

A1 =
sππ − 4µ2

sππ
[(θR − tNN )2 − 9sππτ/4],

θR = (tNN + 3µ2 − 3sππ)/4. (30)

The discussed function (28) is well defined outside the
reaction phase space, and it gives the value in question
FOPE(µ2) = FM (µ2) at tNN = µ2.

The calculations were performed with the function
F̃OPE(tNN ) defined as follows:

[F̃OPE(tNN )]2 ≡

sππ+∆sππ∫
sππ−∆sππ

dsππ

√
sππ−4µ2

sππ
[FOPE(tNN )2]

sππ+∆sππ∫
sππ−∆sππ

dsππ

√
sππ−4µ2

sππ

,

(31)

since experimental and simulated data exist for the strip
s

(α)
ππ − ∆sππ ≤ sππ ≤ s

(α)
ππ + ∆sππ of the non-negligible

width 2∆sππ in the plane (tNN , sππ). Analytical calcula-
tions result in cumbersome expressions than that of (30),
so they are not shown here. Because of the rapid growth
of the ππ amplitude with sππ at the threshold, the differ-
ence of the simple function (28) and the above one (31)
was found to be reaching the 20% level at ∆sππ = 0.15µ2.

The non-negligent spread in sππ has another important
issue for the extrapolation. The specific bin (α) is then
characterized by the rectangle (t(α)

NN ±∆tNN , s
(α)
ππ +∆sππ)

in the Chew–Low plane (tNN , sππ). The cross section for
the bin is given by the integral

σ(α)(‖M‖2; tNN ) =
∫ sMAX

ππ

s
(α)
ππ −∆sππ

dsππR(‖M‖2; sππ, tNN ),

(32)

where R(‖M‖2; sππ, tNN ) stands for the matrix element
integrated with respect to the rest two variables including
the ππ scattering angle. The upper limit,

sMAX
ππ ≡ MAX{s(α)

ππ +∆sππ, s
+
ππ(tNN )}, (33)

is independent of tNN only for bins (α) such that their in-
tersection with the strip s(α)

ππ −∆sππ ≤ sππ ≤ s(α)
ππ +∆sππ

is located strictly inside the physical domain of the Chew–
Low plot. Therefore, when bins are close to the bound-
aries of the physical interval [t−NN (s), t+NN (s)], the physi-
cal space in the sππ variable is limited not by the tNN -
independent value sππ +∆sππ but by the curve

s+
ππ(tNN ) =

1
2m2

{
tNN (s+m2 − µ2) + 2m2µ2 + (34)√

tNN (tNN − 4m2)(s− (m+ µ)2)(s− (m− µ)2)
}
.

As a result, the value of the phase space σ(α)(1; tNN )
for such bins does depend on tNN as well as cross sections
σ(α)(‖M‖2; tNN ) do. This makes it necessary to withdraw
such bins from the extrapolation base, regardless of the
kind of the extrapolation function. For example, both
the cross section σ(α)(‖M‖2; tNN ) and quasi-amplitude
have the breaking points at two values of tNN , for which
s+
ππ(tNN ) = sππ +∆sππ. This phenomenon is clearly seen

in Fig. 2. The selection of bins is an easy problem in the
course of a practical data treatment. It is solved by calcu-
lating the empty phase space for the considered array of
bins and keeping on the ones with the constant value of
the phase space.

Had the sππ dependence of the partially integrated ma-
trix element R(sππ, tNN ) be known in advance, it would
be possible to insert corrections for the bins intersecting
the boundary curve s+

ππ(tNN ) and include more points
into the Chew–Low extrapolation. Our curves in Fig. 2
are corrected by the empty phase space — evidently this
is insufficient. Another possibility to enlarge the base of
extrapolation by cutting more narrow strips in sππ de-
pends on the amount of available experimental events.

4.2 Simulations of the Chew–Low extrapolation

Here, we discuss the simulations of tNN distributions for
the fixed strip in sππ performed at PLab = 335, 420 and
460 MeV/c. Extrapolation functions calculated for three
types of theoretical amplitudes are shown in Fig. 2. These
data are simulated with the binning and the precision
which are only computer-dependent; the same binning of
the available experimental data suffers a lack of statis-
tics — this is clearly demonstrated by empty experimental
bins in the discussed pictures.

Simulated data are extrapolated to the point tNN =
µ2. The true limiting value for each amplitude is cal-
culated with the use of (31). The linear (lin) and the
quadratic (squ) extrapolation patterns are selected for
demonstrations. Extrapolation results are collected in Ta-
ble 3, where true limiting value specific to the considered
amplitudes are given in the bottom boxes. We display here
the variation of the extrapolated values with the choice of
the left bound tNN,1 the right bound tNN,2 being fixed.

The o columns of Table 3 are the undoubted grounds
for the crucial inference that even in the simplified case of
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Table 3. Results of the linear (lin) and quadratic (squ) Chew–Low extrapolations to the point tNN = µ2 for various left-hand
bounds tNN,1. The theoretical amplitudes used for the data simulations correspond to: o — the solution with OPE contribution
only; g — the solution with all mechanisms; x — the solution with all mechanisms excluding OPE. The quantities given in the
bottom boxes show the true values at tNN = µ2

PLab = 335 MeV/c, sππ = 4.15µ2

n tNN,1/µ
2 tNN,2/µ

2 olin osqu glin gsqu xlin xsqu

17 −5.519 −1.155 0.6111 0.7889 1.201 0.866 0.1612 0.3578
16 −5.262 −1.155 0.6204 0.7883 1.176 0.909 0.1712 0.3582
14 −4.749 −1.155 0.6382 0.7871 1.138 0.987 0.1898 0.3669
12 −4.235 −1.155 0.6546 0.7892 1.112 1.067 0.2087 0.3723
10 −3.722 −1.155 0.6709 0.7875 1.100 1.140 0.2286 0.3697
8 −3.208 −1.155 0.6858 0.7864 1.099 1.223 0.2479 0.3589
6 −2.695 −1.155 0.6998 0.7096 1.111 1.341 0.2607 0.3953

0.7870 0.7870 0.6036 0.6036 0.0000 0.0000

PLab = 420 MeV/c, sππ = 4.15µ2

n tNN,1/µ
2 tNN,2/µ

2 olin osqu glin gsqu xlin xsqu

17 −10.01 −1.283 0.4497 0.7097 0.4011 0.3829 0.4971 0.5755
16 −9.497 −1.283 0.4672 0.7090 0.3848 0.4435 0.4971 0.5965
14 −8.470 −1.283 0.4999 0.7098 0.3715 0.5568 0.5051 0.6259
12 −7.444 −1.283 0.5315 0.7055 0.3838 0.6502 0.5208 0.6395
10 −6.417 −1.283 0.5598 0.7028 0.4154 0.7361 0.5384 0.6496
8 −5.390 −1.283 0.5845 0.7070 0.4632 0.8261 0.5561 0.6688
6 −4.364 −1.283 0.6089 0.6990 0.5321 0.8703 0.5782 0.6715

0.7054 0.7054 0.4751 0.4751 0.0000 0.0000

PLab = 460 MeV/c, sππ = 4.45µ2

n tNN,1/µ
2 tNN,2/µ

2 olin osqu glin gsqu xlin xsqu

21 −12.58 −1.797 0.1849 0.4911 −0.0071 0.908 0.2755 1.485
20 −12.06 −1.797 0.2015 0.4916 0.0174 1.006 0.3477 1.462
18 −11.04 −1.797 0.2337 0.4917 0.8569 1.200 0.4837 1.405
16 −10.01 −1.791 0.2643 0.4917 0.1830 1.378 0.6084 1.325
14 −8.984 −1.797 0.2928 0.4933 0.3074 1.535 0.7152 1.230
12 −7.957 −1.797 0.3198 0.4951 0.4568 1.658 0.7997 1.131
10 −6.930 −1.797 0.3459 0.4917 0.6242 1.737 0.8584 1.042
8 −5.904 −1.797 0.3695 0.4895 0.8043 1.726 0.8938 0.969
6 −4.877 −1.797 0.3906 0.4939 0.9711 1.653 0.9096 0.922

0.4886 0.4886 0.3591 0.3591 0.0000 0.0000

the pure OPE mechanism the linear extrapolation method
usually underestimates the value in question and results in
a systematic error of 25–35%. The impression of some im-
provement with the move to the extreme right position in
the tNN interval is misleading, since the effect of nonzero
errors of the real experimental data must make the result
even more ambiguous at the reduced extrapolation base.
We must also note that the OPE amplitude (i.e. o) does
not fit at all the complete set of data (see Table 4 of the
paper [25] for values of χ2).

There are no advantages of both linear and quadratic
extrapolation methods in the more realistic case g, when
all mechanisms are present; the coincidence of the results
with the exact numbers seems to be of a random nature.
The 200–300% deviation makes it unreliable to use both
linear and quadratic extrapolations even for estimations.

What is really disappointing is the examination of the
columns x. The nonzero numbers give rise to the suspi-
cions that the extrapolations follow the dictate of the ex-
perimental data rather than the theoretical amplitude. In-
deed, the theoretical amplitude x fits well to the data but
it has no pole at all at tNN = µ2.

5 Discussion

In view of the negative general conclusion on the appli-
cability of the Chew–Low extrapolation at the considered
energies, we need to shed more light on its origin.

A special explanation is necessary for the pure OPE
mechanism, since the application of the Chew–Low ap-
proach is based on the hypothesis of the OPE dominance.
Indeed, six — eight data points are enough for success-
ful extrapolation, if Nature follows the simplest pattern of
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the OPE dominance in the πN → ππN reaction. A dis-
crepancy displayed in Table 3 is due to different isospin
breakings in the main program and extrapolation function
(31).

It is not so difficult to realize that the small deviation
of the extrapolation function (28) from the linear pattern
is due to the participation of the D-wave parameters g2

and g3 — see the quantities Φ22, Φ23, Φ33 given by (30).
If these parameters are absent, the internal integrations
of the leading order ChPT amplitude in the formula (28)
result in linear function of tNN . The quoted parameters
slightly affect the ππ amplitude at the considered energies.
Nonlinearity of the extrapolation function is small but it
influences the extrapolations drastically.

The off-shell appearance of the ππ amplitude in the
πN → ππN reaction acts the part of the magnification
lens in respect to D-wave parameters — we have already
seen this in the previous section, when their contributions
to the threshold amplitudes were discussed. However, the
above phenomenon does not present an obstacle by itself,
since the quadratic extrapolation for a pure OPE ampli-
tude is proved to be exact and stable.

It is the complicated form of the πN → ππN ampli-
tude that excludes the possibility of a reliable application
of the Chew–Low extrapolation in the simplest manner.
This conclusion is derived in terms of a particular ansatz
of the extrapolation function (27). Let us discuss now, why
the conclusion is of more general nature.

There is the difference between our function FM (tNN )
and the functions defined in terms of cross sections: we
are extracting the square root of (27). The quadratic be-
haviour of the function FOPE(tNN ) in tNN is equivalent
to the fourth-order behaviour of the cross-section form of
extrapolation function. The quadratic approximation for
the latter function is not good enough. Hence, we see no
reason in using the cross-section form. It is not the point
which is capable to disapprove our conclusions. So let us
discuss another feature implemented in our extrapolation
function (27).

There is the property of the pure OPE cross section
σ|tNN→0 = 0 which was displayed long ago by nonrel-
ativistic calculations (see, for example the textbook by
Källen [37]) and by relativistic calculations as well, like
that of the paper [35] by Naisse and Reignier. The work
[36] by Baton, Laurens and Reignier represented the phe-
nomenological test of this property by the high energy
(PLAB = 2.77 GeV/c) data; since then, it was inserted
into the Chew–Low procedure. Nevertheless, the known
failures of applications of the Chew–Low approach were
associated with the relying on the very property we are
discussing here — see the review [4] by Leksin. More at-
tentive analysis shows that sometimes the foothold for the
definition (27) upon the property σ|tNN→0 = 0 is the rea-
son of the overshooting of the quadratic extrapolations,
accurately following the extrapolated data in the physical
region.

Let us now briefly remind what is the theoretical status
of the hypothesis σ|tNN→0 = 0. Definitely, this is the exact
property of the pure OPE mechanism. What value the

matrix element ‖〈π2π3N(q)|S|π1N(p)〉‖2 obtains at p = q
is the kinematical problem in part. It should be noted that
the point with p = q is located outside the physical region
both for the πN → ππN reaction and for the four-pion
vertex, since the condition p = q implies sππ = µ2.

The form factor S of the amplitude (4) gets the same
factor (−tNN ) in the unpolarized matrix element (9) as
the OPE contribution does. This form factor gives rise to
spin-flip amplitudes, which are the only amplitudes for the
considered reaction surviving at the threshold. However,
besides this form factor, there are three more; kinemat-
ically, their contributions to the quantity (9) are deter-
mined by the matrix (10).

Thus, to make the matrix element (9) vanish at p = q
all entries of the matrix (10) must become zero simultane-
ously. The analysis of the explicit expressions, for which
we have no room here, shows that three conditions are
necessary: 1) s = (m +

√
sππ)2; 2) collinear final pions

k2 = k3; 3) Chiral limit µ = 0. At the same time, the last
condition is the only general reason that can make the
considered form factors vanish dynamically.

Therefore, in the real dynamics, the quantity
‖M‖2tNN→0(σ(tNN = 0)) stands for expressing the Chi-
ral symmetry breaking that is similar to the πN -elastic Σ
term. It oscillates with the energy at least in the region of
isobars, but it seems to be rather small. Nevertheless, it
prevents from making the safe simplification of the extrap-
olation function, namely, dividing the quasi-amplitude by√−tNN . This can also explain the alternating successes
and failures in the application of the Chew–Low procedure
at relatively close energies. Thus, we arrive at the conclu-
sion that, from one side, the complicated tNN -dependence
of the physical amplitude makes useless the linear and
quadratic extrapolation methods, from the other side, the
presence of the Chiral symmetry breaking in the true am-
plitude forbids to soften the tNN -dependence of the ex-
trapolation ansatz.

6 Conclusions

We used the amplitude of the πN → ππN reaction built
of numerous resonance contributions, including the sep-
arately treated OPE mechanism, and the smooth poly-
nomial background (see the paper [25]). Its complicated
appearance was proved to reflect the influence of numer-
ous processes, like ππ → ππ, πN → πN , πN → πN (∗),
πN → π∆, on the physics of the near-threshold region.
Unknown details of isobar interactions were shown to
be the major difficulties encountered within the Oset–
Vicente-Vacas approach.

The use of the amplitude fixed by fittings to the vast
set of near-threshold data for modelling the Chew–Low
extrapolation and Olsson–Turner approach displays that
the cause of the difficulties is the same, the effect being
stronger.

It is shown that the application of the linear Chew–
Low extrapolation cannot be justified either for the cross-
section form of the extrapolation function or for the quasi-
amplitude one. The extrapolation results in enermous the-
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oretical errors, the extracted values being in fact random
numbers. The simplification of the extrapolation ansatz is
not generally valid, the proof of its pertinence cannot be
achieved within the approach.

The results of the Olsson–Turner method are charac-
terized by significant systematic errors coming from un-
known details of the isobar physics.

More narrow data base required by the Olsson–Turner
and Chew–Low approaches is an advantage of the meth-
ods. The consistency analysis of the data base of the
Olsson–Turner approach in terms of threshold identities
makes it obvious that more narrow data base dispropor-
tionally increases the total error.

Anyway, the correct application of the Olsson–Turner
approach requires the due account of isobar physics and
the precise knowledge of interaction parameters. We con-
clude that only the approach based upon the exten-
sive phenomenological model (a là Oset–Vicente-Vacas)
is helpful in investigations of the considered reaction. The
investigations require to develop the simultaneous anal-
yses of related processes like πN → πN (∗), πN → π∆,
thus, extending the energy region up to PLab ∼ 1 GeV/c.
In other words, the problem of determination of the low-
energy ππ-scattering characteristics is a part of more com-
prehensive problem of the investigation of πN → ππN
dynamics at low and intermediate energies.
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29. Počanić, D.: In Proc. of Conf. Meson and Nuclei at Inter-

mediate Energies, May 3–7, 1994, Dubna, Dubna: JINR,
1994

30. Beringer, J.: πN-Newsletter, issn 0942-4148 7, 33 (1992)
31. Olsson, M.G., Meissner, Ulf-G., Kaiser, N. and Bernard,

V.: On the interpretation of the πN → ππN data near
threshold. Preprint CRN 95-13, 1995

32. Bernard, V., Kaiser, N. and Meissner, Ulf-G.: Nucl. Phys.
B457, 147 (1995)

33. Meissner, Ulf-G.: The Reaction πN → ππN at Threshold,
Talk given at 7th International Conference on the Struc-
ture of Baryons, Santa Fe, NM, 3–7 Oct. 1995. Preprint
TK 95 29, 1995, 4p.; hep-ph/9510390

34. Bernard, V., Kaiser, N. and Meissner, Ulf-G.: The Reac-
tion πN → ππN above Threshold in Chiral Perturbation
Theory. Preprint KFA-IKP(TH)-1997-05, Mar. 1997, 29p.;
hep-ph/9703218

35. Naisse, and J., Reignier, J.: Fortschritte der Physik 12,
523 (1964)

36. Baton, J.P., Laurens, G. and Reignier, J.: Nucl. Phys. B3,
349 (1967)

37. Källen, G.: Elementary Particle Physics, London:
Addison-Wesley Publishing company, Inc. 1964

38. Blokhintseva, T.D., Kravtsov, A.V., et al.: Yad. Fiz. 12,
101 (1970); Sov. Journ. Nucl. Phys. 12, 55 (1971)


